Imaging and quantifying Brownian motion of micro- and nanoparticles using phase-resolved Doppler variance optical coherence tomography.

نویسندگان

  • Chang Soo Kim
  • Wenjuan Qi
  • Jun Zhang
  • Young Jik Kwon
  • Zhongping Chen
چکیده

Different types and sizes of micro- and nanoparticles have been synthesized and developed for numerous applications. It is crucial to characterize the particle sizes. Traditional dynamic light scattering, a predominant method used to characterize particle size, is unable to provide depth resolved information or imaging functions. Doppler variance optical coherence tomography (OCT) measures the spectral bandwidth of the Doppler frequency shift due to the Brownian motion of the particles utilizing the phase-resolved approach and can provide quantitative information about particle size. Spectral bandwidths of Doppler frequency shifts for various sized particles were quantified and were demonstrated to be inversely proportional to the diameter of the particles. The study demonstrates the phase-resolved Doppler variance spectral domain OCT technique has the potential to be used to investigate the properties of particles in highly scattering media.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Real-time bulk-motion-correction free Doppler variance optical coherence tomography for choroidal capillary vasculature imaging

In this paper, we analyze the retinal and choroidal blood vasculature in the posterior segment of the human eye with optimized color Doppler and Doppler variance optical coherence tomography. Depth-resolved structure, color Doppler and Doppler variance images are compared. Blood vessels down to the capillary level were detected and visualized with the optimized optical coherence color Doppler a...

متن کامل

Doppler optical microangiography improves the quantification of local fluid flow and shear stress within 3-D porous constructs.

Traditional phase-resolved Doppler optical coherence tomography (DOCT) has been reported to have potential for characterizing local fluid flow within a microporous scaffold. In this work, we apply Doppler optical microangiography (DOMAG), a new imaging technique developed by combining optical microangiography (OMAG) with a phase-resolved method, for improved assessment of local fluid flow and i...

متن کامل

Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography.

Phase variance-based motion contrast is demonstrated using two phase analysis methods in a spectral domain optical coherence tomography system. Mobility contrast is demonstrated for an intensity matched Intralipid solution placed without flow within agarose wells. Vasculature oriented transversely to the imaging direction has been imaged for 3-4 dpf in vivo zebrafish using the phase variance co...

متن کامل

Phase-resolved optical frequency domain imaging.

Phase-resolved Doppler optical coherence tomography has been used to image blood flow dynamics in various tissues using both time-domain and spectral-domain optical coherence tomography techniques. In this manuscript, we present phase-resolved Doppler imaging with a high-speed optical frequency domain imaging system. We demonstrate that by correcting for spurious timing-induced phase errors, ex...

متن کامل

Visualization of human retinal micro-capillaries with phase contrast high-speed optical coherence tomography

We present high-speed Fourier-domain optical coherence tomography (Fd-OCT) with the phase variance based motion contrast method for visualizing retinal micro-circulation in vivo. This technique allows non-invasive visualization of a two-dimensional retinal perfusion map and concurrent volumetric morphology of retinal microvasculature with high sensitivity. The high-speed acquisition rate at 125...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical optics

دوره 18 3  شماره 

صفحات  -

تاریخ انتشار 2013